Wolff–Denjoy theorems in geodesic spaces

نویسندگان

چکیده

We show a Wolff–Denjoy type theorem in complete geodesic spaces the spirit of Beardon's framework that unifies several results this area. In particular, it applies to strictly convex bounded domains R n or C with respect large class metrics including Hilbert's and Kobayashi's metrics. The are generalized 1-Lipschitz compact mappings infinite-dimensional Banach spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

On Splitting Theorems for Cat(0) Spaces and Compact Geodesic Spaces of Non-positive Curvature

In this paper, we prove some splitting theorems for CAT(0) spaces on which some product group acts geometrically and show a splitting theorem for compact geodesic spaces of nonpositive curvature. A CAT(0) group Γ is said to be rigid, if Γ determines the boundary up to homeomorphism of a CAT(0) space on which Γ acts geometrically. Croke and Kleiner have constructed a non-rigid CAT(0) group. As a...

متن کامل

Proximinality in Geodesic Spaces

Let X be a complete CAT(0) space with the geodesic extension property and Alexandrov curvature bounded below. It is shown that if C is a closed subset of X , then the set of points of X which have a unique nearest point in C is Gδ and of the second Baire category inX. If, in addition,C is bounded, then the set of points ofX which have a unique farthest point in C is dense in X. A proximity resu...

متن کامل

Fan's inequality in geodesic spaces

Fan’s minimax inequality is extended to the context of metric spaces with global nonpositive curvature. As a consequence, a much more general result on the existence of a Nash equilibrium is obtained. © 2009 Elsevier Ltd. All rights reserved.

متن کامل

Geodesic Motion on Closed Spaces

Two manifolds with genus g = 0 are given. In one the geodesic motion is apparently integrable. In the second example the geodesic flow, shows the presence of chaotic regions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2021

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12489